solve on the interval [0,2pi): 2cscx+5=1
![solve on the interval 02pi 2cscx51 class=](https://us-static.z-dn.net/files/dc1/57ec04f8846ca15ea8eb38922f609e12.png)
[tex]x\in[0,\ 2\pi)\\\\2\csc x+5=1\ \ \ \ |-5\\\\2\csc x=-4\ \ \ \ |:2\\\\\csc x=-2\\\\\dfrac{1}{\sin x}=-2\to\sin x=-\dfrac{1}{2}\to x=-\dfrac{\pi}{6}+2k\pi\ \vee\ x=\dfrac{7\pi}{6}+2k\pi\\\\x\in[0,\ 2\pi)\to x=-\dfrac{\pi}{6}+2\pi=\dfrac{11\pi}{6}\ \vee\ x=\dfrac{7\pi}{6}\\\\Answer:\ \boxed{D.\ \dfrac{7\pi}{6},\ \dfrac{11\pi}{6}}}[/tex]
Answer: D. [tex]\frac{7\pi }{6} ,\frac{11\pi }{6}[/tex]
Step-by-step explanation:
Isolating the function:
[tex]2csc(x)+5=1\\2csc(x)=1-5\\csc(x)=\frac{-4}{2} \\csc(x)=-2[/tex]
Since [tex]csc(x)=\frac{1}{sin(x)}[/tex] then:
[tex]\frac{1}{sin(x)} =-2\\-\frac{1}{2}=sin(x)[/tex]
The angles in the interval [0,2[tex]\pi[/tex]] that comply with this are [tex]\frac{7\pi }{6} and \frac{11\pi }{6}[/tex]
[tex]sin(\frac{7\pi }{6})=-\frac{1}{2} \\sin(\frac{11\pi }{6})=-\frac{1}{2} \\[/tex]