Respuesta :

quadratic sequence

seems to be

[tex]a_n=an^2+bn+c[/tex]

where [tex]a_1=-8[/tex], [tex]a_2=-8[/tex] and so on

we only need 3 points

(1,-8)

(2,-8)

(3,6)

subsitute and solve

(1,-8)

[tex]-8=a(1)^2+b(1)+c[/tex]

[tex]-8=a+b+c[/tex]


(2,-8)

[tex]-8=a(2)^2+b(2)+c[/tex]

[tex]-8=4a+2b+c[/tex]


(3,6)

[tex]6=a(3)^2+b(3)+c[/tex]

[tex]6=9a+3b+c[/tex]


so we have

-8=a+b+c

-8=4a+2b+c

6=9a+3b+c

add negative of the first equation to the last 2 equations to get

-8=a+b+c

0=3a+b

14=8a+2b

work with the last 2 equations

0=3a+b

14=8a+2b

multiply 1st equation by -2 and add to 2nd

0=-6a-2b

14=8a+2b +

14=2a+0

14=2a

divide by 2

7=a

sub back


0=3a+b

0=3(7)+b

0=21+b

-21=b

sub back

-8=a+b+c

-8=7-21+c

-8=-14+c

6=c


so a=7, b=-21, c=6


the nth term is [tex]a_n=7n^2-21n+6[/tex]

or in function form, [tex]f(n)=7n^2-21n+6[/tex]