contestada

Which function is undefined when theta=pi/2 radians?

Cos theta
Cot theta
Csc theta
Tan theta

Respuesta :

tan ∅ and cot ∅

tan ∅ is undefined for ∅ = [tex]\frac{\pi }{2}[/tex]

and since cot ∅ = 1/ tan ∅ then cot ∅ is also undefined for ∅ = [tex]\frac{\pi }{2}[/tex]

Answer:

[tex]\tan\theta[/tex] is undefined when [tex]\theta=\frac{\pi}{2}[/tex]  radians.

Step-by-step explanation:

Given :  [tex]\theta=\frac{\pi}{2}[/tex]  radians  .

To find : Which function is undefined  ?

Solution :

To check which functions are undefined  put the value of [tex]\theta=\frac{\pi}{2}[/tex],

1) [tex]\cos\theta[/tex]

[tex]\cos\theta=\cos\frac{\pi}{2}=0[/tex]

2) [tex]\cot\theta[/tex]

[tex]\cot\theta=cot\frac{\pi}{2}[/tex]

[tex]\cot\theta=\frac{cos\frac{\pi}{2}}{sin\frac{\pi}{2}}[/tex]

[tex]\cot\theta=\frac{0}{1}[/tex]

[tex]\cot\theta=0[/tex]

3)  [tex]\csc\theta[/tex]

[tex]\csc\theta=cosec\frac{\pi}{2}[/tex]

[tex]\csc\theta=\frac{1}{sin\frac{\pi}{2}}[/tex]

[tex]\csc\theta=\frac{1}{1}[/tex]

[tex]\csc\theta=1[/tex]

4)

[tex]\tan\theta=\tan\frac{\pi}{2}[/tex]

[tex]\tan\theta=\frac{sin\frac{\pi}{2}}{cos\frac{\pi}{2}}[/tex]

[tex]\tan\theta=\frac{1}{0}[/tex]

[tex]\tan\theta=\infity[/tex]

Therefore, [tex]\tan\theta[/tex] is undefined when [tex]\theta=\frac{\pi}{2}[/tex]  radians.

ACCESS MORE