Respuesta :

Given problem is [tex]\frac{(5+2i)}{(6+i)}[/tex]

To simplify that we need to multiply and divide by conjugate of the denominator

conjugate of denominator 6+i will be 6-i as we just need to change sign of the imaginary part

Now multiply and divide by 6-i


[tex]=\frac{(5+2i)}{(6+i)}\cdot\frac{(6-i)}{(6-i)}[/tex]

[tex]=\frac{30-5i+12i-2i^2}{36-6i+6i-i^2}[/tex]

[tex]=\frac{30+7i-2i^2}{36-i^2}[/tex]

[tex]=\frac{30+7i-2\left(-1\right)}{36-\left(-1\right)}[/tex]

[tex]=\frac{30+7i+2}{36+1}[/tex]

[tex]=\frac{32+7i}{37}[/tex]

[tex]=\frac{32}{37}+\frac{7}{37}i[/tex]

Hence final answer is [tex]\frac{32}{37}+\frac{7}{37}i[/tex]

ACCESS MORE