Rewrite the equation in the canonic order [tex] ax^2+bx+c=0 [/tex]:
- [tex] -3x^2+x+9 = 0 [/tex]
- [tex] 2x^2+x-1 = 0 [/tex]
- [tex] -3x^2 + x - 10 = 0 [/tex]
The discriminant is defined as [tex] \Delta = b^2-4ac [/tex]. There are three cases:
- [tex] \Delta > 0 \to \text{two different solutions} [/tex]
- [tex] \Delta = 0 \to \text{one solution} [/tex]
- [tex] \Delta < 0 \to \text{no solutions} [/tex]
Let's compute the discriminant for each equation:
- [tex] -3x^2+x+9 = 0 \to 1-4\cdot(-3)\cdot 9 = 1 + 108 = 109 \to \text{two different solutions} [/tex]
- [tex] 2x^2+x-1 = 0 \to 1-4\cdot 2\cdot (-1) = 1+8=9 \to \text{two different solutions} [/tex]
- [tex] -3x^2 + x - 10 = 0 \to 1-4\cdot (-3) \cdot (-10) 1-120 = -119 \to \text{no solutions}[/tex]