Respuesta :
F = G Mm/r²
mg = G Mm/r²
g = GM/r²
At centre of earth, r=0
g = GM/0
g =0
mg = G Mm/r²
g = GM/r²
At centre of earth, r=0
g = GM/0
g =0
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
[tex]\huge{\blue{\mathbb{HELLO\:BUDDY}}}[/tex]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
[tex]<html><body> <marquee Font style="z-index:2;position:absolute;left:18px;top:97px;font-family:Cursive;font-size:14pt;color:#ffcc00;height:200px;"scrollamount="3"direction="down">❣️</marquee> <marquee Font style="z-index:2;position:absolute;left:1px;top:89px;font-family:Cursive;font-size:14pt;color:#ffcc00;height:100px;"scrollamount="7"direction="down">❣️</marquee> <marquee Font style="z-index:2;position:absolute;left:111px;top:7px;font-family:Cursive;font-size:14pt;color:#ffcc00;height:302px;"scrollamount="4"="4"="4"="4"="4"direction="down">Follow me</marquee> <marquee Font style="z-index:2;position:absolute;left:225px;top83px;font-family:Cursive;font-size:14pt;color:#ffcc00;height:371px;"scrollamount="3"direction="down">❣️</marquee> <marquee Font style="z-index:2;position:absolute;left:105px;top:53px;font-family:Cursive;font-size:14pt;color:#ffcc00;height:317px;"scrollamount="2"direction="down">Follow me</marquee></body> </html>[/tex]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
[tex]\huge{\green{\tt{\underline{\underline{QUESTION:-}}}}}[/tex]
Why value of 'g' is zero at center of Earth?
━━━━━━━━━━━━━✦✗✦━━━━━━━━━━━━━━
[tex]\huge{\red{\tt{\underline{\underline{EXPLANATION:-}}}}}[/tex]
When we move towards centre of earth, the mass is equally distributed in all directions.
The mass beneath you = Mass in front of you = Mass behind you
Thus, all the gravitational forces applied cancel each other and acceleration due to gravity (g) at centre of earth on centre of earth becomes zero (0).
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
[tex]\huge{\green{\tt{\underline{\underline{PROOF:-}}}}}[/tex]
The general equation of acceleration due to gravity is;-
g = [tex]\frac{GM}{r^2} [/tex]
Assuming earth to be a perfect sphere and considering its uniform density.
We make the following adjustments in the following equation.
g = [tex]\frac{GM}{r^2} [/tex]
Multiplying and dividing RHS by volume 'V'.
g = [tex]\frac{GM}{V} × V × \frac{1}{r^2} [/tex]
We know that;-
[tex]\frac{M}{V}[/tex] = Density, ρ
Therefore,
g = [tex]\frac{ρGV}{r^2}[/tex]
For sphere;-
V = [tex]\frac{4}{3}[/tex]π[tex]r^{3}[/tex]
This makes
g = [tex]\frac{4}{3}[/tex]π[tex]r^{3}[/tex] × [tex]\frac{ρG}{r^2}[/tex]
g = [tex]\frac{4πρG}{3}[/tex]
So, at center of Earth
since, r = 0
so, g = 0.
━━━━━━━━━━━━━✦✗✦━━━━━━━━━━━━━━
[tex]\boxed{\underline{\green{\star{HOPE \: YOU\:GOT \:THE \:ANSWER.}}}}[/tex]
[tex]\boxed{\underline{\pink{\star{MARK \: ME \: BRAINLIEST.}}}}[/tex]
[tex]\Large{\mathcal{\green{FOLLOW \: ME}}}[/tex]
[tex]<marquee><font color="Red"><h1>Thankyou</marquee>[/tex]