We use the voltage division problem between the load resistance, amplifier output resistance as
[tex]V_{out} = V_{amlifire} \times \frac{R_{load} }{R_{load} + R_{out} }[/tex].
Here, [tex]V_{out}[/tex] is the output voltage, [tex]V_{amlifire}[/tex] is the amplifier voltage, [tex]R_{load}[/tex] is the load resistance and [tex]R_{out}[/tex] is the amplifier output resistance.
Therefore,
[tex]1-\frac{20}{100} = \frac{1 \ k\Omega }{1 \ k\Omega +R_{out} } \\\\ R_{out} = \frac{1 \ k\Omega }{0.8} -1 \ k\Omega =1250 \Omega -1000 \Omega =250 \Omega[/tex].
Thus, the amplifier output resistance is [tex]250 \ \Omega[/tex].