We know that the change in momentum is equals to the product of force and time that is impulse ( [tex]F \times t[/tex]). Therefore, we need to determine the value of that the water is in air by using the second equation of motion,
[tex]s=ut+\frac{1}{2} gt^2[/tex]
Here, u is initial velocity which is zero.
[tex]s= \frac{1}{2} gt^2 \\\\ t = \sqrt{\frac{2s}{g} }[/tex].
Thus, impulse
[tex]= F \times \sqrt{\frac{2s}{g} }[/tex]
From Newton`s second law,
[tex]F =mg[/tex]
Therefore, impulse
[tex]= mg \times \sqrt{\frac{2s}{g} } = m \sqrt{2gs}[/tex]
Given, [tex]m = 7.3 kg[/tex] and [tex]s = 2.0 m[/tex]
Substituting these values, we get
Change in momentum = impulse
[tex]= 7.3 \ kg \sqrt{2 \times 9.8 \ m/s^2 \times 2.0 \ m } = 45 .7 \ Ns[/tex].