The diameter of drop of mercury is 1.0 mm. The volume of drop is equal to the volume of sphere, thus, volume of mercury drop will be:
[tex]V=\frac{4}{3}\pi r^{3}[/tex]
Here, r is radius of drop.
Radius of drop can be calculated as:
[tex]r=\frac{d}{2}=\frac{1 mm}{2}=0.5 mm[/tex]
Convert the unit into cm
1 mm=0.1 cm
thus,
0.5 mm=0.05 cm
Volume of sphere will be:
[tex]V=\frac{4}{3}(3.14) (0.05 cm)^{3}=5.23\times 10^{-4}cm^{3}[/tex]
Now, density of mercury is [tex]13.6 g/cm^{3}[/tex]
Mass can be calculated as follows:
[tex]m=d\times V=13.6 g/cm^{3}\times 5.23\times 10^{-4}cm^{3}=7.12\times 10^{-3}g[/tex]
Molar mass of mercury is 200.59 g/mol thus, number of moles will be:
[tex]n=\frac{m}{M}=\frac{7.12\times 10^{-3}g}{200.59 g/mol}=3.55\times 10^{-5} mol[/tex]
In 1 mole of a substance there are [tex]6.023\times 10^{23}[/tex] atoms thus, [tex]3.55\times 10^{-5} mol[/tex] will have:
[tex]N=3.55\times 10^{-5}mol\times 6.023\times 10^{23}atoms/mol=2.14\times 10^{19} atoms[/tex]
Therefore, number of atoms in a drop of mercury will be [tex]2.14\times 10^{19} atoms[/tex].