An airplane with a mass of 1.20 × 104 kg tows a glider with a mass of 0.60 × 104 kg. If the airplane propellers provide a net forward thrust of 3.60 × 104 n, what is the acceleration of the glider

Respuesta :

Both airplane and glider accelerate with the same rate therefore, we use the formula,

[tex]F_{net} =Ma=( m_{1} + m_{2} ) a[/tex].

Here, [tex]F_{net}[/tex] is net force, [tex]m_{1}[/tex] is the mass of airplane, [tex]m_{2}[/tex] is the mass of the glider.

Given, [tex]F_{net} = 3.60 \times 10^{4} \ N[/tex],[tex]m_{1}= 1.20 \times 10^{4} \ kg[/tex] and [tex]m_{2} = 0.60 \times 10^4 \ kg[/tex].

Substituting these values, we get

[tex]3.60 \times 10^{4} \ N = (1.20 \times 10^{4} \ kg + 0.60 \times 10^4 \ kg) \times a \\\\\ a =\frac{3.60 \times 10^{4} \ N}{1.80\times10^4 \ kg  } = 2.0 \ m/s^2[/tex].

Thus, the acceleration of the glider is [tex]2.0 \ m/s^2[/tex].

ACCESS MORE