Respuesta :
[tex]4x^2-5=3x+4 [/tex]
[tex]4x^2 - 3x - 5 - 4 = 0[/tex]
[tex]4x^2 - 3x -9 = 0[/tex]
[tex] x= \dfrac{3 \pm \sqrt{3^2 - 4(4)(-9)}}{2(4)} [/tex]
[tex]x = \frac 1 8 (3 \pm \sqrt{9(1 + 16)})[/tex]
[tex]x = \frac 1 8 (3 \pm 3\sqrt{17})[/tex]
Answer:
Solutions are 1.92 and -1.17
Step-by-step explanation:
The general solutions of quadratic equation of the form ax²+bx+c = 0 is given by [tex]\frac{-b+\sqrt{b^2-4ac} }{2a}[/tex] and [tex]\frac{-b-\sqrt{b^2-4ac} }{2a}[/tex]
Here the the equation is 4x²-5 = 3x + 4
On rearranging
4x²-3x-5-4 = 0
4x²-3x-9 = 0
Comparing with ax²+bx+c = 0, we will get a = 4, b = -3 and c = -9
The solutions are given by
[tex]\frac{-(-3)+\sqrt{(-3)^2-4*4*(-9)} }{2*4}[/tex] and [tex]\frac{-(-3)-\sqrt{(-3)^2-4*4*(-9)} }{2*4}[/tex]
[tex]\frac{3+\sqrt{153} }{8}[/tex] and [tex]\frac{3-\sqrt{153} }{8}[/tex]
1.92 and -1.17