What number is the product of the expression below?

(2.35 x 105)(5.92 x 107)

Question 2 options:

1.3912 × 10 10


1.3912 × 10 11


1.3912 × 10 12


1.3912 × 10 13

Respuesta :

gmany

[tex](2.35\times10^5)(5.92\times10^7)=(2.35\cdot5.92)(10^5\cdot10^7)\\\\=13.912\cdot10^{5+7}=13.912\cdot10^{12}=1.3912\cdot10\cdot10^{12}\\\\=\boxed{1.3912\cdot10^{13}}[/tex]

Answer: [tex]1.3912\times10^{13}[/tex]

Step-by-step explanation:

The given expression : [tex](2.35 \times 10^5)(5.92 \times 10^7)[/tex]

First combine the like terms (i.e. exponents together and rest of numbers together) , we get

[tex]2.35 \times 5.92 \times10^5 \times 10^7[/tex]

Using property , [tex]a^m\times a^n=a^{m+n}[/tex] , the above repression will become

[tex]13.912 \times10^{5+7}\\\\=13.912\times10^12[/tex]

Also, in scientific form , the first number should be in decimal form where decimal should be after first digit .

Then, [tex]13.912\times10^{12}[/tex]

[tex]\\\\=1.3912\times10\times10^{12}\\\\= 1.3912\times10^{1+12}\\\\=1.3912\times10^{13}[/tex]

Hence, the final answer = [tex]1.3912\times10^{13}[/tex]

ACCESS MORE