Respuesta :
[tex](2.35\times10^5)(5.92\times10^7)=(2.35\cdot5.92)(10^5\cdot10^7)\\\\=13.912\cdot10^{5+7}=13.912\cdot10^{12}=1.3912\cdot10\cdot10^{12}\\\\=\boxed{1.3912\cdot10^{13}}[/tex]
Answer: [tex]1.3912\times10^{13}[/tex]
Step-by-step explanation:
The given expression : [tex](2.35 \times 10^5)(5.92 \times 10^7)[/tex]
First combine the like terms (i.e. exponents together and rest of numbers together) , we get
[tex]2.35 \times 5.92 \times10^5 \times 10^7[/tex]
Using property , [tex]a^m\times a^n=a^{m+n}[/tex] , the above repression will become
[tex]13.912 \times10^{5+7}\\\\=13.912\times10^12[/tex]
Also, in scientific form , the first number should be in decimal form where decimal should be after first digit .
Then, [tex]13.912\times10^{12}[/tex]
[tex]\\\\=1.3912\times10\times10^{12}\\\\= 1.3912\times10^{1+12}\\\\=1.3912\times10^{13}[/tex]
Hence, the final answer = [tex]1.3912\times10^{13}[/tex]