Respuesta :
The domain of (f/g)(x) will be: {[tex]x\in R : x>3[/tex]}
Explanation
Given functions are: [tex]f(x)= -\frac{1}{x}[/tex] and [tex]g(x)=\sqrt{3x-9}[/tex]
So...
[tex](f/g)(x)= \frac{f(x)}{g(x)}= \frac{-\frac{1}{x}}{\sqrt{3x-9}}=-\frac{1}{x\sqrt{3x-9}}[/tex]
As [tex](f/g)(x)[/tex] is in fraction form, so the denominator part can't be 0 for defining the function and as (3x-9) is under square root so the value of (3x-9) will be always greater than 0
Thus.....
[tex]x\neq 0\\ \\ or \\ \\ 3x-9>0\\ 3x>9\\ x>3[/tex]
So the domain of (f/g)(x) will be: {[tex]x\in R : x>3[/tex]}
Question 1: Determine the domain of h(x)=[tex]\frac{5}{\sqrt{2x+10} }[/tex] and write it using set builder notation.
Answer: {x|x>-5}
Question 2: Find the domain and range of the function shown in the graph. Write the domain and range using interval notation.
Answer: domain: (-6, -1] ∪ (1, 5]
range: (-3, 2] ∪ [3, 7)
Question 3: Find (f*g)(x) when f(x)=[tex]\frac{\sqrt{x+3} }{x}[/tex] and g(x)= [tex]\frac{\sqrt{x+3} }{2x}[/tex]
Answer: [tex]\frac{x+3}{2x^{2} }[/tex]
Question 4: Determine the domain of (f/g)(x) when f(x)=[tex]\frac{-1}{x}[/tex] and g(x)=[tex]\sqrt{3x-9}[/tex]
Answer: (3,∞)
.
. For more answers follow this link to my quizlet Lemon_Milk
. https://quizlet.com/_6xjh07
.