Respuesta :

Given that ABC is a right angle triangle with m∠C=90°,  m∠B=75° and AB=12cm.

Area of triangle = [tex]\frac{1}{2} * base * height[/tex]

                          = [tex]\frac{1}{2} *BC*AC[/tex]

So we need to find BC,AC now.

To find them let us take sinB and cosB.

SinB = [tex]\frac{AC}{AB} = \frac{AC}{12}[/tex]

[tex]AC = 12*sinB = 12*sin(75) [/tex]

[tex]cos B = \frac{BC}{AB}  = \frac{BC}{12}[/tex]

BC = 12* cos B = 12* cos 75

So, area = [tex]\frac{1}{2} * 12 * sin(75)*12* cos(75)[/tex]

             = 72*sin(75)*cos(75)

             = 36*(2sin(75)cos(75))

             = 36*sin(150) =  18

Hence area of triangle is 18 [tex]cm^{2}[/tex]

The area of [tex]\triangle\text{ ABC}[/tex] is [tex]\boxed{\bf 18\text{\bf\ square units}}[/tex].

Further explanation:

Given information:

In [tex]\triangle\text{ ABC}[/tex] the measure of [tex]\angle\text{C}[/tex] is [tex]90^{\circ}[/tex]and measure of [tex]\angle\text{B}[/tex] is [tex]75^{\circ}[/tex].

The length of AB is [tex]12\text{ cm}[/tex].

The measure of [tex]\angle\text{A}[/tex] can be calculated as follows:

[tex]\begin{aligned}\angle\text{A}&=180^{\circ}-(\angle\text{B}+\angle\text{C})\\&=180^{\circ}-(75^{\circ}+90^{\circ})\\&=180^{\circ}-165^{\circ}\\&=15^{\circ}\end{aligned}[/tex]

The [tex]\triangle\text{ ABC}[/tex] is shown in Figure 1.

Consider the length of the perpendicular of [tex]\triangle\text{ ABC}[/tex] as [tex]x[/tex] and the length of the base as [tex]y[/tex].

The perpendicular length [tex]x[/tex] is calculated as follows:

[tex]\begin{aligned}\sin 75^\circ&=\frac{x}{{12}}\\ \frac{{\sqrt3+1}}{{2\sqrt2}}&=\frac{x}{{12}}\\ \frac{{\sqrt3+1}}{{2\sqrt2}}\times12&=x\\ \frac{{6\left({\sqrt3+1}\right)}}{{\sqrt2}}\times\frac{{\sqrt2}}{{\sqrt2}}&=x\\ x&=3\sqrt 2\left({\sqrt3+1}\right)\\ \end{aligned}[/tex]

The base length [tex]y[/tex] is calculated as follows:

[tex]\begin{aligned}\sin 15^\circ&=\frac{y}{{12}}\\\frac{{\sqrt3-1}}{{2\sqrt2}}&=\frac{y}{{12}}\\ \frac{{\sqrt3-1}}{{2\sqrt2}}\times12&=y\\ \frac{{6\left({\sqrt3-1}\right)}}{{\sqrt2}}\times\frac{{\sqrt 2}}{{\sqrt 2}}&=y\\ y&=3\sqrt2\left({\sqrt3-1}\right)\\ \end{aligned}[/tex]

Area of right angled triangle is calculated as follows:

[tex]\boxed{\text{Area}=\dfrac{1}{2}\cdot \text{Base}\cdot \text{Perpendicular}}[/tex]

The length of base of the triangle is [tex]3\sqrt{2}(\sqrt{3}-1)[/tex] units and length of perpendicular is [tex]3\sqrt{2}(\sqrt{3}+1)[/tex] units.

Now, the area of [tex]\triangle\text{ ABC}[/tex] is calculated as follows:

[tex]\begin{aligned}\text{Area}&=\dfrac{1}{2}\cdot \left[3\sqrt{2}(\sqrt{3}-1)\right]\cdot \left[3\sqrt{2}(\sqrt{3}+1)\right]\\&=\dfrac{1}{2}\cdot \left[9\cdot 2\left((\sqrt{3})^{2}-1\right)\right]\\&=\dfrac{1}{2}\cdot 18\cdot 2\\&=18 \end{aligned}[/tex]

Thus, the area of [tex]\triangle\text{ ABC}[/tex] is [tex]\boxed{\bf 18\text{\bf\ square units}}[/tex].

Learn more:

1. Learn more about the division: https://brainly.com/question/545132

2. Learn more about the simplification https://brainly.com/question/894273

3. Learn more about the percentage https://brainly.com/question/928382

Answer details:

Grade: High school

Subject: Mathematics

Chapter: Triangles

Keywords: Triangle, right-angled triangle, sin75, sin15, 12cm, ABC, area, area of triangle ABC, m \angle C=90, m \angle B=75, perpendicular, base.

Ver imagen AkhileshT
ACCESS MORE