Respuesta :
Hi!
h(t)= -16t^2+16t+90
h(t) = -16(t^2 - t) + 90
h(t) = -16(t^2 - t + (1/2)^2) + 90 + 4
h(t) = -16(t - 1/2)^2 + 94
vertex at(1/2 , 94) , since a = -16 < 0 , the parabola opens down, which makes the vertex. the global maximum, so:
Max at(1/2 , 94)
object hits the ground at h = 0, then:
-16(t - 1/2)^2 + 94 = 0
(t - 1/2)^2 = 94/16 = 47/8
t - 1/2 = ± √(47/8)
t = 1/2 ± √(47/8)
t = -1.9 , 2.9 => reject t = -1.9
t = 2.9 sec => time it takes for the projectile to hit the ground
h(t)= -16t^2+16t+90
h(t) = -16(t^2 - t) + 90
h(t) = -16(t^2 - t + (1/2)^2) + 90 + 4
h(t) = -16(t - 1/2)^2 + 94
vertex at(1/2 , 94) , since a = -16 < 0 , the parabola opens down, which makes the vertex. the global maximum, so:
Max at(1/2 , 94)
object hits the ground at h = 0, then:
-16(t - 1/2)^2 + 94 = 0
(t - 1/2)^2 = 94/16 = 47/8
t - 1/2 = ± √(47/8)
t = 1/2 ± √(47/8)
t = -1.9 , 2.9 => reject t = -1.9
t = 2.9 sec => time it takes for the projectile to hit the ground
Answer:
Maximum height of the object is 94 feet.
Maximum time taken is 2.9 seconds.
Step-by-step explanation:
We have,
Height of the bridge is [tex]h=-16t^{2}+16t+90[/tex].
i.e. [tex]h=-16t^{2}+16t+90[/tex]
i.e. [tex]\frac{dh}{dt}=-32t+16[/tex]
Equating [tex]\frac{dh}{dt}=0[/tex] gives,
[tex]-32t+16=0[/tex]
i.e. [tex]-32t=-16[/tex]
i.e. [tex]t=\frac{-16}{-32}[/tex]
i.e. [tex]t=\frac{1}{2}[/tex]
Again differentiating, we get [tex]\frac{d^2h}{dt^2}=-32<0[/tex].
Thus, by the 'First derivative test of the maxima and minima', we get,
The maximum height of the object will be at the time, [tex]t=\frac{1}{2}[/tex] second.
Thus, the maximum height is given by,
[tex]h=-16\times 0.5^{2}+16\times 0.5+90[/tex]
i.e. [tex]h=-16\times 0.25+16\times 0.5+90[/tex]
i.e. [tex]h=-4+8+90[/tex]
i.e. [tex]h=4+90[/tex]
i.e. h = 94 feet.
Hence, the maximum height of the object is 94 feet.
Further, the height of the object when it reaches the ground will be 0 feet.
So, we have,
[tex]0=-16t^{2}+16t+90[/tex]
i.e. [tex]16t^{2}-16t-90=0[/tex]
i.e. [tex](t+1.9)(t-2.9)=0[/tex]
i.e. t = -1.9 sec or t = 2.9 sec
Since, time cannot be negative.
We get, the maximum time taken by the object to reach the ground is 2.9 seconds.