check the picture below on the top side.
we know that x = 4 = b, therefore, using the 30-60-90 rule, h = 4√3, and DC = 4+8+4 = 16.
[tex]\bf \textit{area of a trapezoid}\\\\
A=\cfrac{h(a+b)}{2}~~
\begin{cases}
a,b=\stackrel{bases}{parallel~sides}\\
h=height\\[-0.5em]
\hrulefill\\
a=8\\
b=\stackrel{DC}{16}\\
h=4\sqrt{3}
\end{cases}\implies A=\cfrac{4\sqrt{3}(8+16)}{2}
\\\\\\
A=2\sqrt{3}(24)\implies \boxed{A=48\sqrt{3}}[/tex]
now, check the picture below on the bottom side.
since we know x = 9, then b = 9, therefore DC = 9+6+9 = 24, and h = b = 9.
[tex]\bf \textit{area of a trapezoid}\\\\
A=\cfrac{h(a+b)}{2}~~
\begin{cases}
a,b=\stackrel{bases}{parallel~sides}\\
h=height\\[-0.5em]
\hrulefill\\
a=6\\
b=\stackrel{DC}{24}\\
h=9
\end{cases}\implies A=\cfrac{9(6+24)}{2}
\\\\\\
A=\cfrac{9(30)}{2}\implies \boxed{A=135}[/tex]