Respuesta :

gmany

[tex]\left\{\begin{array}{ccc}-3x+2y=-9\\4x-15y=-25\end{array}\right\\\\|A|=\left|\begin{array}{ccc}-3&2\\4&-15\end{array}\right|\\\\|A_x|=\left|\begin{array}{ccc}-9&2\\-25&-15\end{array}\right|\\\\|A_y|=\left|\begin{array}{ccc}-3&-9\\4&-25\end{array}\right|[/tex]

Answer:

The determinants can be used to solve for x and y in the system of linear equations below are:

[tex]|A|=\begin{vmatrix}-3 &2 \\ 4&-15 \end{vmatrix}\\\\\\|A_{x}|=\begin{vmatrix}-9 &2 \\ -25 &-15 \end{vmatrix}\\\\\\|A_{y}|=\begin{vmatrix}-3 &-9 \\ 4 &-25\end{vmatrix}[/tex]

Step-by-step explanation:

We are given a system of linear equations as:

            [tex]-3x+2y=-9[/tex]

and      [tex]4x-15y=-25[/tex]

Hence, we can form a matrix with the help of these equations as:

[tex]AX=b[/tex]

where A is a matrix formed by the coefficients of x and y and is a 2×2 matrix.

and b is a matrix formed by the term after equality and is a 2×1 matrix.

Hence, we have:

[tex]A=\begin{bmatrix}-3 &2 \\4& -15\end{bmatrix}\\\\\\X=\begin{bmatrix}x\\y \end{bmatrix}\\\\\\b=\begin{bmatrix}-9\\ -25\end{bmatrix}[/tex]

As we know that:

[tex]x=\dfrac{|A_{x}|}{|A|}\\and\\y=\dfrac{|A_{y}|}{|A|}[/tex]

where,

[tex]|A|=\begin{vmatrix}-3 &2 \\ 4&-15 \end{vmatrix}\\\\\\|A_{x}|=\begin{vmatrix}-9 &2 \\ -25 &-15 \end{vmatrix}\\\\\\|A_{y}|=\begin{vmatrix}-3 &-9 \\ 4 &-25\end{vmatrix}[/tex]

ACCESS MORE