Respuesta :
We know that:
- Point M is the midpoint of AB
- Point N is the midpoint of MB
Let AB be x
⇒ AM = MB = [tex]\frac{x}{2}[/tex]
and MN = NB = [tex]\frac{x}{4}[/tex]
Now, the ratios would be:
- AM:MN = [tex]\frac{x}{2}[/tex] ÷ [tex]\frac{x}{4}[/tex] = 2
- BN:AM = [tex]\frac{x}{4}[/tex] ÷ [tex]\frac{x}{2}[/tex] = [tex]\frac{1}{2}[/tex]
- MN:AB = [tex]\frac{x}{4}[/tex] ÷ [tex]\frac{x}{1}[/tex] = [tex]\frac{1}{4}[/tex]
Solution
Let, AB=4x unit
M is the midpoint of AB.
→AM=MB=2x unit---------Mid Point of segment divide it ino two equal parts.
Point N, is the midpoint of MB.
→MN=NB
MB=x unit
MN=NB=x unit---------Mid Point of segment divide it ino two equal parts.
[tex]1.\rightarrow \frac{MA}{MN}=\frac{2x}{x}\\\\=2\\\\2.\rightarrow \frac{BN}{MA}=\frac{x}{2x}\\\\=\frac{1}{2}\\\\3.\rightarrow \frac{MN}{AB}=\frac{x}{4x}\\\\=\frac{1}{4}[/tex]
![Ver imagen Аноним](https://us-static.z-dn.net/files/dfc/715f1f16c5430cf6c285b5e96795c1e6.png)