Respuesta :

We know that:

  • Point M is the midpoint of AB
  • Point N is the midpoint of MB

Let AB be x

⇒ AM = MB = [tex]\frac{x}{2}[/tex]

and MN = NB = [tex]\frac{x}{4}[/tex]

Now, the ratios would be:

  • AM:MN = [tex]\frac{x}{2}[/tex] ÷ [tex]\frac{x}{4}[/tex] = 2
  • BN:AM = [tex]\frac{x}{4}[/tex] ÷ [tex]\frac{x}{2}[/tex] = [tex]\frac{1}{2}[/tex]
  • MN:AB = [tex]\frac{x}{4}[/tex] ÷ [tex]\frac{x}{1}[/tex] = [tex]\frac{1}{4}[/tex]

Solution

Let, AB=4x unit

M is the midpoint of AB.

→AM=MB=2x unit---------Mid Point of segment divide it ino two equal parts.

Point N, is the midpoint of MB.

→MN=NB

MB=x unit

MN=NB=x unit---------Mid Point of segment divide it ino two equal parts.

[tex]1.\rightarrow \frac{MA}{MN}=\frac{2x}{x}\\\\=2\\\\2.\rightarrow \frac{BN}{MA}=\frac{x}{2x}\\\\=\frac{1}{2}\\\\3.\rightarrow \frac{MN}{AB}=\frac{x}{4x}\\\\=\frac{1}{4}[/tex]

Ver imagen Аноним
ACCESS MORE