Respuesta :

Answer:

[tex]3n^2+5n-2[/tex]

Step-by-step explanation:

Consider the quadratic sequence :  6, 20, 40, 66, 98, 136

A quadratic sequence is of form [tex]an^2+bn+c[/tex].

For n = 1 :

[tex]6=a+b+c[/tex]    ...(i)

For n = 2 :

[tex]20=4a+2b+c[/tex]    ...(ii)

For  n = 3 :

[tex]40=9a+3b+c[/tex]     ...(iii)

On subtracting equation (ii) from (iii), we get

[tex]5a+b=20[/tex]      ...(iv)

On subtracting equation (i) from (ii), we get

3a+b=14                    ...(v)

On subtracting equation (iv) and (v) , we get

2a=6 which implies a=3

So, from equation (v), we get [tex]b=14-3a=14-9=5[/tex]

From equation (i), we get

c=6-a-b=6-3-5=-2

On putting a = 3 , b = 5, c = -2 in [tex]an^2+bn+c[/tex], we get

[tex]3n^2+5n-2[/tex]

ACCESS MORE