Respuesta :

Using the definition of the tangent function, you can find ...

... FA = DF·tan(30°) = (7√3)·(1/√3) = 7

Then the usual formula for triangle area can be used:

... Area = (1/2)bh = (1/2)·(7√3)(7)

... Area = (49/2)√3 square units

... ≈ 42.44 square units

We need to find the area of a triangle whose one side and two angles are given.

The area of [tex]\triangle A FD[/tex] is [tex]43.44\ \text{unit}^2[/tex].

In [tex]\triangle A FD[/tex]

[tex]\angle F=90^{\circ}[/tex]

[tex]\angle D=30^{\circ}[/tex]

[tex]DF=7\sqrt{3}[/tex]

From the trigonometric identities we have

[tex]\tan D=\dfrac{A F}{DF}\\\Rightarrow A F=DF\tan D\\\Rightarrow A F=7\sqrt{3}\times \tan30^{\circ}=7\sqrt{3}\times \dfrac{1}{\sqrt{3}}\\\Rightarrow A F=7\ \text{units}[/tex]

Area of a triangle is given by

[tex]A=\dfrac{1}{2}\times\text{Base}\times\text{Height}\\\Rightarrow A=\dfrac{1}{2}\times A F\times DF\\\Rightarrow A=\dfrac{1}{2}\times 7\times7\sqrt{3}\\\Rightarrow A=24.5\sqrt{3}=43.44\ \text{unit}^2[/tex]

The area of [tex]\triangle A FD[/tex] is [tex]43.44\ \text{unit}^2[/tex].

Learn more:

https://brainly.com/question/24865193

https://brainly.com/question/15442893

Ver imagen boffeemadrid
ACCESS MORE