Point C is the midpoint of AB.point A has coordinates (2,4)and point C has coordinates (5,0) what are the coordinates of point B?

Respuesta :

Answer:

The coordinates of point B is (8,-4)

Step-by-step explanation:

Midpoint of a line segment: It is the point on the line segment that divides the segment in two congruent segments.

Since it is given that C is the midpoint of Line segment AB.

Mid-point of a segment of end points [tex]A(x_{1},y_{1})[/tex] and [tex]B(x_{2},y_{2})[/tex] is, C= [tex](\frac{x_{1}+x_{2}}{2} , \frac{y_{1}+y_{2}}{2})[/tex].

As, given the coordinates of A and C are (2,4) and (5,0)

then,  we have [tex]x_{1}=2[/tex] , [tex]y_{1}=4[/tex] ; [tex]\frac{x_{1}+x_{2}}{2}=5[/tex]  and [tex]\frac{y_{1}+y_{2}}{2}=0[/tex]

to find the coordinates of [tex]B(x_{2},y_{2})[/tex].

[tex]\frac{2+x_{2}}{2}=5[/tex]

Simplify:

[tex]2+x_{2}=10[/tex]

⇒ [tex]x_{2}=8[/tex]

to solve for [tex]y_{2}[/tex] we have, [tex]\frac{y_{1}+y_{2}}{2}=0[/tex]

or [tex]y_{1}+y_{2}=0[/tex]

or [tex]y_{2}= -y_{1}[/tex]= -4

so, the values of [tex]x_{2}=8[/tex] and [tex]y_{2}=-4[/tex]

Therefore, the coordinates of point B is (8,-4)




ACCESS MORE