Answer:
The coordinates of point B is (8,-4)
Step-by-step explanation:
Midpoint of a line segment: It is the point on the line segment that divides the segment in two congruent segments.
Since it is given that C is the midpoint of Line segment AB.
Mid-point of a segment of end points [tex]A(x_{1},y_{1})[/tex] and [tex]B(x_{2},y_{2})[/tex] is, C= [tex](\frac{x_{1}+x_{2}}{2} , \frac{y_{1}+y_{2}}{2})[/tex].
As, given the coordinates of A and C are (2,4) and (5,0)
then, we have [tex]x_{1}=2[/tex] , [tex]y_{1}=4[/tex] ; [tex]\frac{x_{1}+x_{2}}{2}=5[/tex] and [tex]\frac{y_{1}+y_{2}}{2}=0[/tex]
to find the coordinates of [tex]B(x_{2},y_{2})[/tex].
[tex]\frac{2+x_{2}}{2}=5[/tex]
Simplify:
[tex]2+x_{2}=10[/tex]
⇒ [tex]x_{2}=8[/tex]
to solve for [tex]y_{2}[/tex] we have, [tex]\frac{y_{1}+y_{2}}{2}=0[/tex]
or [tex]y_{1}+y_{2}=0[/tex]
or [tex]y_{2}= -y_{1}[/tex]= -4
so, the values of [tex]x_{2}=8[/tex] and [tex]y_{2}=-4[/tex]
Therefore, the coordinates of point B is (8,-4)