The vapor pressure of benzene, c6h6, is 100.0 torr at 26.1 °c. Assuming raoult's law is obeyed, how many moles of a nonvolatile solute must be added to 100.0 ml of benzene to decrease its vapor pressure by 10.0% at 26.1 °c? The density of benzene is 0.8765 g>cm3.

Respuesta :

According to Raoult's law:

[tex]p_{solution} = X_{solvent}\times P_{solvent}[/tex]    -(1)

where [tex]p_{solution}[/tex] is observed vapor pressure of the solution, [tex]X_{solvent}[/tex] is mole fraction of solvent, and [tex]P_{solvent}[/tex] is vapor pressure of the pure solvent.

Vapor pressure of benzene = [tex]100 torr at 26.1^{o} C[/tex]   (given)

Reduction in vapor pressure on addition of non-volatile solute = 10.0 %   (given)

So, vapor pressure of the component in the solution = [tex]100 - 10 = 90 torr[/tex]

Substituting the values in formula (1):

[tex]90 = mole fraction of benzene \times 100[/tex]

[tex]mole fraction of benzene = \frac{90}{100} = 0.9[/tex]

Mole of benzene = [tex]Volume\times \frac{density}{Molar Mass}[/tex]

Mole of benzene = [tex]100 cm^{3}\times \frac{0.8765 g/cm^{3}}{78 g/mol} = 1.124 mol[/tex]

Since, [tex]mole fraction of benzene =\frac{mole of benzene }{mole of benzene +mole of non volatile solute }[/tex]

So, [tex]0.9 =\frac{1.124 }{1.124+mole of non volatile solute }[/tex]

[tex]\frac{1.124}{0.9} =1.124+mole of non volatile solute[/tex]

[tex]mole of non volatile solute = 1.249 - 1.124 = 0.125[/tex]

Hence, moles of a nonvolatile solute to be added is [tex]0.125[/tex].