Answer : The ratio of the conjugate base to acid[tex]\frac{\left [ A^{-} \right ]}{\left [ HA \right ]}[/tex] is 1.513.
Solution :
Given data,
pH = 4.94
pKa = 4.76
The Henderson-Hasselbalch equation is used as follows:
[tex]pH=pKa+\log \frac{\left [ A^{-} \right ]}{\left [ HA \right ]}[/tex] .........(1)
Substitute the given values in equation (1) , we get the ratio of conjugated base to acid :
[tex]4.94=4.76+\log \frac{\left [ A^{-} \right ]}{\left [ HA \right ]}[/tex]
[tex]4.94-4.76=\log \frac{\left [ A^{-} \right ]}{\left [ HA \right ]}[/tex]
[tex]0.18=\log \frac{\left [ A^{-} \right ]}{\left [ HA \right ]}[/tex]
[tex]\frac{\left [ A^{-} \right ]}{\left [ HA \right ]}=10^{0.18}[/tex]
[tex]\frac{\left [ A^{-} \right ]}{\left [ HA \right ]}=1.513[/tex]
Thus , the answer is 1.513.