Respuesta :
Four electrons are placed at the corner of a square
So we will first find the electrostatic potential at the center of the square
So here it is given as
[tex]V = 4\frac{kQ}{r}[/tex]
here
r = distance of corner of the square from it center
[tex]r = \frac{a}{\sqrt2}[/tex]
[tex]r = \frac{10nm}{\sqrt2} = 7.07 nm[/tex]
[tex]Q = e = -1.6 * 10^{-19} C[/tex]
now the net potential is given as
[tex]V = \frac{4 * 9*10^9 * (-1.6 * 10^{-19})}{7.07 * 10^{-9}}[/tex]
[tex]V = 0.815 V[/tex]
now potential energy of alpha particle at this position
[tex]U_i = qV = 2*1.6 * 10^{-19} * (-0.815) = -2.6 * 10^{-19} J[/tex]
Now at the mid point of one of the side
Electrostatic potential is given as
[tex]V = 2\frac{kQ}{r_1} + 2\frac{kQ}{r_2}[/tex]
here we know that
[tex]r_1 = \frac{a}{2} = 5 nm[/tex]
[tex]r_2 = \sqrt{(a/2)^2 + a^2} = \frac{\sqrt5 a}{2}[/tex]
[tex]r_2 = 11.2 nm[/tex]
now potential is given as
[tex]V = 2\frac{9 * 10^9 * (-1.6 * 10^{-19})}{5 * 10^{-9}} + 2\frac{9*10^9 * (-1.6 * 10^{-19})}{11.2 * 10^{-9}}[/tex]
[tex]V = -0.576 - 0.257 = -0.833 V[/tex]
now final potential energy is given as
[tex]U_f = q*V = 2*1.6 * 10^{-19}* (-0.833) = -2.67 * 10^{-19} J[/tex]
Now work done in this process is given as
[tex]W = U_f - U_i[/tex]
[tex]W = (-0.267 * 10^{-19}) - (-0.26 * 10^{-19}} [/tex]
[tex]W = -7 * 10^{-22} J[/tex]