solution:
[tex]Given: (let a = alpha)
aA = 90 rad/s^2
(wd) = 600 rpm = 62.831 rad/s
(w0) = 0 rpm
ra = .015 m
rb = .05 m
rc = .025 m
rd = .075
aB = aA\times(ra/rb) = 90 * (.015/.05)
aB = 27 rad/s^2
aC = aB, Therefore aC = 27 rad/s^2
aD = aC\times(rc/rb) = 27 * (.025/.075)
aD = 9 rad/s^2[/tex][tex]Use angular motion analysis for a constant angular Velocity
w = (w0) + aD\timest =====> t = (w - w0)/aD
t = (62.832 - 0)/9
t = 6.981s
Find Theda D using same analysis
Theda =Theda0 +(w0)t + .5(aD)t^2 = 0 + 0 + .5(aD)t^2
Theda = .5\times9\times(6.981^2)
Theda = 219.3046 rad ====> 219.3046/2pi = 34.903 rev
Theda = 34.903 rev[/tex]