solution:
[tex]calculate the local atmospheric pressure\\
p_{abs}=p_{atm}+p_{gauge}\\
p_{abs}=p_{atm}+(p_{wgh})\\
185\times10^3=p_{atm}+(1000\times9.81\times9)\\
185000=p_{atm}+88290\\
p_{atm}=96710pa\\
=96.71kpa\\
b) calculate the density of the liquid\\
s=\frac{p_{l}}{p_{w}}\\
0.85=\frac{p_{l}}{1000}\\
p_{l}=850kg/m^3\\
calculate the absolute pressure\\
p_{abs}=p_{atm}+p_{gauge}\\
p_{abs}=p_{atm}+p_{lgh}
p_{abs}=[96710]+[850\times9.81\times5]\\
p_{abs}=138402.5pa
=138.4kpa[/tex]