Low pass sinusoidal transfer function is:
[tex]\frac{Y(j\omega)}{X(j\omega)}=\frac{K}{j\omega \tau+1}[/tex]
Where, [tex]\tau[/tex] is time constant and [tex]\omega=2\pi f=2\pi (100 Hz)[/tex] where f is the frequency.
For 5% error, the magnitude must drop below 0.95 K
[tex]\Rightarrow |\frac{K}{j\omega \tau}|=\frac{K}{sqrt{\omega^2\tau^2+1}}=0.95K[/tex]
[tex](\omega^2\tau^2+1)(0.95)^2=1[/tex]
[tex] \Rightarrow \tau=[\frac{1-(0.95^2)} {(0.95)^2(2\pi\times100)^2}]^{1/2}=0.52 ms[/tex]
Thus, the maximal allowable time constant is 0.52 ms
Phase angle, [tex]\phi=tan^{-1}(-\omega \tau)[/tex]
At 50 Hz,
[tex]\phi=tan^{-1}(-2\pi\times 50\times 0.0005)=-9^o[/tex]
At 100 Hz,
[tex]\phi=tan^{-1}(-2\pi\times 100 \times 0.0005)=-17.4^o[/tex]