Respuesta :
0.225 centimeters
Further explanation
Given:
- An image of a snowflake is 1.8 centimeters wide.
- The actual snowflake is [tex]\frac{1}{8}[/tex] the size of the image.
Question:
What is the width of the actual snowflake?
The Process:
Since the actual snowflake is part of the image size by [tex]\frac{1}{8}[/tex] part, let us make a model of the image and the actual snowflake.
- The image of a snowflake: [tex]\boxed{ \cdot }\boxed{ \cdot }\boxed{ \cdot }\boxed{ \cdot }\boxed{ \cdot }\boxed{ \cdot }\boxed{ \cdot }\boxed{ \cdot } \rightarrow 1.8 \ cm [/tex]
- The actual snowflake: [tex]\boxed{ \cdot } \rightarrow \frac{1}{8} \ of \ 8[/tex]
And now, let us calculate the width of the actual snowflake. As we know, the actual snowflake is [tex]\frac{1}{8}[/tex] the size of the image.
[tex]\boxed{ \ = \frac{1}{8} \times 1.8 \ }[/tex]
[tex]\boxed{ \ = \frac{1}{8} \times \frac{18}{10} \ }[/tex]
[tex]\boxed{ \ = \frac{1 \times 18}{8 \times 10} \ }[/tex]
[tex]\boxed{ \ = \frac{18}{80} \ }[/tex]
Both the numerator and denominator are divided by two to make it a simple fraction.
[tex]\boxed{ \ = \frac{9}{40} \ }[/tex]
Both the numerator and denominator are multiplied by 25 to make it a decimal fraction. Therefore, the denominator will be 1,000.
[tex]\boxed{ \ = \frac{9 \times 25}{40 \times 25} \ }[/tex]
[tex]\boxed{ \ = \frac{225}{1,000} \ }[/tex]
Thus, the width of the actual snowflake is 0.225 centimeters.
Learn more
- What is the area of the whole mosaic in square inches? https://brainly.com/question/982984
- What fraction of the box is left (Kim and Courtney)? brainly.com/question/37157
- What is the amount of apple juice in each bottle? brainly.com/question/5798698
Keywords: an image of a snowflake, 1.8 centimeters wide. the actual, 1/8, the size, what is the width, the actual snowflake, simple fraction, decimal, the numerator and denominator