The parametric equations for shell position are ...
... (x, y) = (v₀·cos(θ)t, -(1/2g)t²+v₀·sin(θ)t)
with conditions
... v₀ = 225 m/s
... g = 9.8 m/s²
The value of θ in the range 0–45° that makes (x, y) = (1200, 0) m for t > 0.
Solving the x equation for t, we have
[tex]x=v_0\cos{(\theta)}t=d\\\\t=\dfrac{d}{v_0\cos{(\theta)}}[/tex]
Substituting this into the equation for y gives
[tex]y=-\dfrac{g}{2}t^2+v_0\sin{(\theta)}t=0\\\\v_0\sin{(\theta)}-\dfrac{g}{2}t=0\qquad\text{divide by t}\\\\\dfrac{2v_0\sin{(\theta)}}{g}=\dfrac{d}{v_0\cos{(\theta)}}\qquad\text{solve for t, substitute for t from above}\\\\v_0^2\sin{(2\theta)}=gd\\\\\theta=\dfrac{1}{2}\arcsin{\left(\dfrac{9.8\cdot 1200}{225^2}\right)}\approx 6.72^{\circ}[/tex]