What is the length of AC ?
3ft
4ft
9ft
18ft

ΔACB and ΔMNB are similar. Therefore the corresponding sides are in proportion:
[tex] \dfrac{AC}{MN}=\dfrac{CB}{NB}\\\\MN=9\ ft\\CB=2\cdot3\ ft=6\ ft\\NB=3\ ft [/tex]
Substitute:
[tex]\dfrac{AC}{9}=\dfrac{6}{3}\\\\\dfrac{AC}{9}=2\ \ \ \ |\cdot9\\\\AC=18\ ft[/tex]
Answer:
The answer is D, 18ft.
Step-by-step explanation:
The length of AC is 18 ft.