Respuesta :
Answer:
The correct option is B.
Step-by-step explanation:
The given function is
[tex]f(x)=2\cos(x+4)[/tex]
We need to find the first positive x-intercept for the function f(x).
Equate f(x)=0, to find the x-intercepts.
[tex]f(x)=0[/tex]
[tex]2\cos(x+4)=0[/tex]
Divide both sides by 2.
[tex]\cos(x+4)=0[/tex]
[tex]x+4=\frac{\pi}{2}+n\pi[/tex] [tex][\because \cos x=0, then x=\frac{\pi}{2}+n\pi,n\in Z][/tex]
Subtract 4 from both sides.
[tex]x=\frac{\pi}{2}+n\pi-4[/tex]
For n=-1,
[tex]x=\frac{\pi}{2}+(-1)\pi-4=-5.57079632679[/tex]
For n=0,
[tex]x=\frac{\pi}{2}+(0)\pi-4=-2.42920367321[/tex]
For n=1,
[tex]x=\frac{\pi}{2}+(1)\pi-4=0.712388980385\approx 0.712[/tex]
The first positive x-intercept for the function f(x) is 0.712. Therefore the correct option is B.