Respuesta :
WIth the parameterization
[tex]\mathbf r(t)=\langle\sin t,\cos t,t\rangle[/tex]
we end up with
[tex]\mathbf f(\mathbf r(t))=\mathbf f(\sin t,\cos t,t)=5\sin t\,\mathbf i-4\cos t\,\mathbf j+3t\,\mathbf k[/tex]
We also have
[tex]\mathrm d\mathbf r=\mathbf r'(t)\,\mathrm dt=\langle\cos t,-\sin t,1\rangle\,\mathrm dt[/tex]
So in the line integral, we get
[tex]\displaystyle\int_{\mathcal C}\mathbf f\cdot\mathrm d\mathbf r=\int_{t=0}^{t=3\pi/2}\mathbf f(\mathbf r(t))\cdot\mathbf r'(t)\,\mathrm dt[/tex]
[tex]=\displaystyle\int_{t=0}^{t=3\pi/2}(9\sin t\cos t+3t)\,\mathrm dt=\frac98(3\pi^2+4)[/tex]
The line integral ∫cf⋅dr, where f(x,y,z)=5xi−4yj+3zk and c is given by the vector function r(t)=⟨sint , cost , t⟩, 0≤t≤3π/2 is [tex]\rm \dfrac{9}{8}(3\pi^2+4)[/tex] and this can be determined by integrating and simplifying by substituting the limits.
Given :
f(x,y,z)=5xi−4yj+3zk and c is given by the vector function r(t)=⟨sint,cost,t⟩, 0≤t≤3π/2.
The following calculation can be used in order to evaluate the line integral ∫cf⋅dr :
[tex]\rm f(r(t)) = f(sint,cost,t)[/tex]
[tex]\rm f(sint,cost,t) = 5sint\; i - 4cost\; j +3t\;k[/tex]
Now, the expression of dr in terms of dt is given by:
dr = r'(t) dt
Now, substitute the known values in the line integral and simplify it.
[tex]\rm \int\limits_c {x} \, dx = \int\limits^{t = 3\pi/2}_{t = 0} {f(r(t)). r'(t)} \, dt[/tex]
[tex]\rm \int\limits_c {x} \, dx = \int\limits^{t = 3\pi/2}_{t = 0} {(9sintcost+3t)} \, dt[/tex]
Now, integrate both sides in the above expression and then simplify that expression by putting the limits.
[tex]\rm \int\limits_c {x} \, dx = \dfrac{9}{8}(3\pi^2+4)[/tex]
For more information, refer to the link given below:
https://brainly.com/question/22008756