Respuesta :
q = mCΔT
The correct specific heat capacity of water is 4.187 kJ/(kg.K).
ΔT = q/mC = 87 kJ/[648.00 kg x 4.187 kJ/(kg.K)] = 87 kJ/(2713 kJ/K) = 0.032 K
Tf = Ti + ΔT = 298 K + 0.032 K = 298.032 K
Answer : The final temperature of water is, 432.26 K
Solution :
Formula used :
[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]
where,
Q = heat supply = 87 kJ = 87000 J
m = mass of water = 648.00 kg
c = specific heat of water = [tex]1J/kg.K[/tex]
[tex]\Delta T=\text{Change in temperature}[/tex]
[tex]T_{final}[/tex] = final temperature = ?
[tex]T_{initial}[/tex] = initial temperature = 298 K
Now put all the given values in the above formula, we get the final temperature of water.
[tex]87000J=648.00kg\times 1J/kg.K\times (T_{final}-298K)[/tex]
[tex]T_{final}=432.26K[/tex]
Therefore, the final temperature of water is, 432.26 K