Respuesta :

The n-th term is given by

[tex]a_n=a_1\cdot r^{(n-1)}\qquad\text{where r is the common ratio}[/tex]

Then we can find the common ratio from the given terms.

[tex]\dfrac{a_4}{a_1}=\dfrac{a_1\cdot r^{(4-1)}}{a_1}=r^3=\dfrac{-16}{1024}=\left(\dfrac{-1}{4}\right)^3\\\\r=\dfrac{-1}{4}\\\\a_6=1024\left(\dfrac{-1}{4}\right)^5=-1[/tex]

The appropriate choice is -1.

Answer:

Option 3rd is correct

[tex]a_6 = -1[/tex]

Step-by-step explanation:

The nth term for the geometric sequence is given by:

[tex]a_n = a_1 \cdot r^{n-1}[/tex]

where,

[tex]a_1[/tex] is the first term

r is the common ratio

n is the number of terms.

As per the statement:

[tex]a_1 = 1024[/tex]

[tex]a_4 = -16[/tex]

For n = 4, we have;

[tex]a_4 = a_1 \cdot r^3[/tex]

⇒[tex]-16 = 1024 \cdot r^3[/tex]

Divide both sides by 1024 we have;

[tex]-\frac{1}{64} =r^3[/tex]

⇒[tex]r =\sqrt[3]{-\frac{1}{64}}=\sqrt[3]{-\frac{1}{4^3}}[/tex]

⇒[tex]r = -\frac{1}{4} = -0.25[/tex]

We have to find the value of  6th term.

for n = 6

[tex]a_6 = 1024 \cdot (-0.25)^5 = 1024 \cdot (-0.0009765625) = -1[/tex]

⇒[tex]a_6 = -1[/tex]

Therefore,  the 6th term of the geometric sequence is, -1