A bisector divides a line, shape, or angle into two equal halves. The results of the computations are:
- [tex]x = 18[/tex].
- [tex]\angle FGH = 32[/tex].
- [tex]\angle HGI = 32[/tex].
- [tex]\angle FGI = 64[/tex]
Since GH is the bisector of [tex]\angle FGI[/tex]
This means that:
[tex]\angle FGH = \angle HGI[/tex]
Where:
[tex]\angle FGH = 2x - 4[/tex]
[tex]\angle HGI = 3x - 22[/tex]
[tex]\angle FGH = \angle HGI[/tex] becomes
[tex]2x - 4 = 3x - 22[/tex]
Collect like terms
[tex]3x - 2x = 22 - 4[/tex]
[tex]x = 18[/tex]
Hence, the value of x is 18
Recall that:
[tex]\angle FGH = 2x - 4[/tex]
[tex]\angle FGH = 2 \times 18 - 4[/tex]
[tex]\angle FGH = 32[/tex]
Hence, the value of [tex]\angle FGH[/tex] is 32
Recall that:
[tex]\angle FGH = \angle HGI[/tex]
So:
[tex]\angle HGI = 32[/tex]
Hence, the value of [tex]\angle HGI[/tex] is 32
[tex]\angle FGI = 2 \times \angle HGI[/tex] because [tex]\angle FGH = \angle HGI[/tex]
[tex]\angle FGI = 2 \times 32[/tex]
[tex]\angle FGI = 64[/tex]
Hence, the value of [tex]\angle FGI[/tex] is 64
Read more about angle bisectors at:
https://brainly.com/question/12896755