onaaa
contestada

in the diagram, ray GH bisects <FGI.
a.solve for x and find <FGH.
b. find m<HGI
c. find m <FGI

a. x= (simplify your answer)

in the diagram ray GH bisects ltFGI asolve for x and find ltFGHb find mltHGIc find m ltFGIa x simplify your answer class=

Respuesta :

Part a.

An angle bisector divides the angle into two congruent angles.

m<FGH = m<HGI

2x - 4 = 3x - 22

Subtract 2x from both sides. Add 22 to both sides.

18 = x

x = 18

Now that we know x = 18,

m<FGH = 2x - 4 = 2(18) - 4 = 36 - 4 = 32

m<FGH = 32

Part b.

m<HGI = 3x - 22 = 3(18) - 22 = 54 - 22 = 32

m<HGI = 32

Part c.

m<FGI = m<FGH + m<HGI = 32 + 32 = 64

m<FGI = 64


A bisector divides a line, shape, or angle into two equal halves. The results of the computations are:

  • [tex]x = 18[/tex].
  • [tex]\angle FGH = 32[/tex].
  • [tex]\angle HGI = 32[/tex].
  • [tex]\angle FGI = 64[/tex]

Since GH is the bisector of [tex]\angle FGI[/tex]

This means that:

[tex]\angle FGH = \angle HGI[/tex]

Where:

[tex]\angle FGH = 2x - 4[/tex]

[tex]\angle HGI = 3x - 22[/tex]

[tex]\angle FGH = \angle HGI[/tex] becomes

[tex]2x - 4 = 3x - 22[/tex]

Collect like terms

[tex]3x - 2x = 22 - 4[/tex]

[tex]x = 18[/tex]

Hence, the value of x is 18

Recall that:

[tex]\angle FGH = 2x - 4[/tex]

[tex]\angle FGH = 2 \times 18 - 4[/tex]

[tex]\angle FGH = 32[/tex]

Hence, the value of [tex]\angle FGH[/tex] is 32

Recall that:

[tex]\angle FGH = \angle HGI[/tex]

So:

[tex]\angle HGI = 32[/tex]

Hence, the value of [tex]\angle HGI[/tex] is 32

[tex]\angle FGI = 2 \times \angle HGI[/tex] because [tex]\angle FGH = \angle HGI[/tex]

[tex]\angle FGI = 2 \times 32[/tex]

[tex]\angle FGI = 64[/tex]

Hence, the value of [tex]\angle FGI[/tex] is 64

Read more about angle bisectors at:

https://brainly.com/question/12896755