Respuesta :
Given polar equation is
[tex] r=\frac{3}{2-\cos\left(\theta\right)} [/tex]
for polar equation we use
[tex]x=r\cos\left(\theta\right)[/tex]
and [tex]y=r\sin\left(\theta\right)[/tex]
plug the given value of r into these equations we get:
[tex]x=r\cos\left(\theta\right)=\frac{3\cos\left(\theta\right)}{2-\cos\left(\theta\right)} [/tex]
[tex]y=r\sin\left(\theta\right)=\frac{3\sin\left(\theta\right)}{2-\cos\left(\theta\right)} [/tex]
find derivative with respect to theta
[tex] \frac{dx}{d\theta}=-\frac{6\sin\left(\theta\right)}{\left(2-\cos\left(\theta\right)\right)^2} [/tex]
[tex] \frac{dy}{d\theta}=-\frac{3\left(\sin^2\left(\theta\right)+\cos^2\left(\theta\right)-2\cos\left(\theta\right)\right)}{\left(2-\cos\left(\theta\right)\right)^2} [/tex]
now slope is given by formula
[tex] m=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} [/tex]
plug the above values into slope formula and the given angle theta = pi/2
[tex] m=\frac{-\frac{3\left(\sin^2\left(\theta\right)+\cos^2\left(\theta\right)-2\cos\left(\theta\right)\right)}{\left(2-\cos\left(\theta\right)\right)^2}}{-\frac{6\sin\left(\theta\right)}{\left(2-\cos\left(\theta\right)\right)^2}} [/tex]
plugging theta=pi/2 and simplifying it gives
m=0.5
Hence final answer is m=0.5