Respuesta :

Given polar equation is

[tex] r=\frac{3}{2-\cos\left(\theta\right)} [/tex]

for polar equation we use

[tex]x=r\cos\left(\theta\right)[/tex]

and [tex]y=r\sin\left(\theta\right)[/tex]

plug the given value of r into these equations we get:


[tex]x=r\cos\left(\theta\right)=\frac{3\cos\left(\theta\right)}{2-\cos\left(\theta\right)} [/tex]


[tex]y=r\sin\left(\theta\right)=\frac{3\sin\left(\theta\right)}{2-\cos\left(\theta\right)} [/tex]


find derivative with respect to theta


[tex] \frac{dx}{d\theta}=-\frac{6\sin\left(\theta\right)}{\left(2-\cos\left(\theta\right)\right)^2} [/tex]


[tex] \frac{dy}{d\theta}=-\frac{3\left(\sin^2\left(\theta\right)+\cos^2\left(\theta\right)-2\cos\left(\theta\right)\right)}{\left(2-\cos\left(\theta\right)\right)^2} [/tex]


now slope is given by formula

[tex]  m=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} [/tex]

plug the above values into slope formula and the given angle theta = pi/2

[tex] m=\frac{-\frac{3\left(\sin^2\left(\theta\right)+\cos^2\left(\theta\right)-2\cos\left(\theta\right)\right)}{\left(2-\cos\left(\theta\right)\right)^2}}{-\frac{6\sin\left(\theta\right)}{\left(2-\cos\left(\theta\right)\right)^2}} [/tex]

plugging theta=pi/2 and simplifying it gives

m=0.5

Hence final answer is m=0.5