[tex] \bf \qquad \qquad \textit{ratio relations}
\\\\
\begin{array}{ccccllll}
&\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\
&-----&-----&-----\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3}
\end{array}\\\\
\rule{31em}{0.25pt}\\\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}} [/tex]
[tex] \bf \rule{31em}{0.25pt}\\\\
\cfrac{smaller}{larger}\qquad \cfrac{s}{s}=\cfrac{\sqrt{98}}{\sqrt{162}}~~
\begin{cases}
98=2\cdot 7\cdot 7\\
\qquad 2\cdot 7^2\\
162=2\cdot 9\cdot 9\\
\qquad 2\cdot 9^2
\end{cases}\implies \cfrac{s}{s}=\cfrac{\sqrt{2\cdot 7^2}}{\sqrt{2\cdot 9^2}}
\\[2em]
\cfrac{s}{s}=\cfrac{7\sqrt{2}}{9\sqrt{2}}\implies \cfrac{s}{s}=\cfrac{7}{9} [/tex]
bearing in mind that the ratio of the sides, is the same as the ratio of the perimeters.