Respuesta :

the answer is D 9.2 units

Answer:

Option D. 9.2 units.

Step-by-step explanation:

In the ΔJKL ⇒ ∠J + ∠K + ∠L = 180

                      ∠J + 67 + 74 = 180° ⇒ ∠J = 39°

In the given triangle JKL we apply law of sines

[tex]\frac{SinK}{JL}[/tex] = [tex]\frac{SinJ}{KL}[/tex] = [tex]\frac{SinL}{JK}[/tex]

Now we take [tex]\frac{SinK}{JL}[/tex]  = [tex]\frac{SinJ}{2.3}[/tex]

[tex]\frac{Sin67}{JL}[/tex] = [tex]\frac{Sin39*}{2.3}[/tex]

JL = [tex]\frac{(2.3)Sin67}{Sin39}[/tex]

[tex]\frac{(2.3)(0.92)}{(0.6293)}[/tex] = 3.36 units

Now [tex]\frac{SinL}{JK}[/tex] = [tex]\frac{SinJ}{KL}[/tex]

[tex]\frac{Sin74}{JK}[/tex] = [tex]\frac{Sin39}{2.3}[/tex]

JK = [tex]\frac{2.3(Sin74)}{(Sin39)}[/tex]

    = [tex]\frac{2.3(0.9613)}{(0.6293)}[/tex]

    = 3.51 units

So perimeter of the triangle = 3.36 + 3.51 + 2.3 = 9.15 units ≈ 9.2 units.

Option D is the answer.

ACCESS MORE