To solve this problem you must apply the proccedure shown below:
1. By definition, if the point [tex] P [/tex] divides [tex] AB [/tex] into a ratio a:b, this point is [tex] \frac{a}{a+b} [/tex] of the distance of the segment. Therefore, this is:
[tex] \frac{a}{a+b} =\frac{2}{2+3} =\frac{2}{5} [/tex]
2. The x coordinate of the point, is:
[tex] x1+\frac{a}{a+b} (x2-x1)=-3+\frac{2}{5}(3-(-3)) =-0.6 [/tex]
3. The y coordinate is:
[tex] y1+\frac{a}{a+b} (y2-y1)=1+\frac{2}{5} (5-1)=2.6 [/tex]
The answer is: [tex] P(-0.6, 2.6) [/tex]