Find point P that divides segment AB into a 2:3 ratio. The point should be closer to A. A(-3,1) and B(3,5). P = Answer Round your answer to the nearest tenth. Write your answer as a point using parenthesis and a comma (__,__). Do not use any spaces.

Respuesta :

To solve this problem you must apply the proccedure shown below:

1. By definition, if the point [tex] P [/tex] divides [tex] AB [/tex] into a ratio a:b, this point is [tex] \frac{a}{a+b} [/tex] of the distance of the segment. Therefore, this is:

[tex] \frac{a}{a+b} =\frac{2}{2+3} =\frac{2}{5} [/tex]

2. The x coordinate of the point, is:

[tex] x1+\frac{a}{a+b} (x2-x1)=-3+\frac{2}{5}(3-(-3)) =-0.6 [/tex]

3. The y coordinate is:

[tex] y1+\frac{a}{a+b} (y2-y1)=1+\frac{2}{5} (5-1)=2.6 [/tex]

The answer is: [tex] P(-0.6, 2.6) [/tex]

ACCESS MORE