Here the original proportion is [tex] p=0.55 [/tex]. The proportion approximately follows normal distribution. Mean is [tex] \mu=p=0.55 [/tex].
Standard deviation is [tex] \sigma=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.55(1-0.55)}{1000}}=0.0157
[/tex]
The required probability is
[tex] P(0.55-0.02<X<0.55+0.02)=P(0.53<X<0.57) [/tex]
[tex] P(0.53<X<0.57)=P(\frac{0.53-0.55}{0.0157}<Z<\frac{0.57-0.55}{0.0157}) [/tex]
[tex] P(0.53<X<0.57)=P(-1.274<Z<1.274) [/tex]
Using standard normal tables,
[tex] P(0.53<X<0.57)=0.7973 [/tex]