Respuesta :
[tex]a^{-1}=\dfrac{1}{a}\\\\\text{therefore:}\\\\f(x)=(x+1)^{-1}=\dfrac{1}{x+1}[/tex]
[tex]g(x)=x-2[/tex]
[tex] f(x)\div g(x)=\dfrac{1}{x+1}\div(x-2)=\dfrac{1}{x+1}\cdot\dfrac{1}{x-2}=\dfrac{1}{(x+1)(x-2)}\\\\\text{The domain:}\\\\(x+1)(x-2)\neq0\iff x+1\neq0\ \wedge\ x-2\neq0\\\\x\neq-1\ \wedge\ x\neq2 [/tex]
[tex]\text{Therefore your answer is B.}\\(-\infty;-1)\ \cup\ (-1;\ 2)\ \cup\ (2;\ \infty)[/tex]