The diagram shows a circle with center O. Chords AC and BC are drawn such that mAB and mCD are 42 degrees and 68 degrees, respectively. What is m angle DEC?

The diagram shows a circle with center O Chords AC and BC are drawn such that mAB and mCD are 42 degrees and 68 degrees respectively What is m angle DEC class=

Respuesta :

The measure of angle DEC is 1/2 times the sum of the 2 arcs. The arcs measure 110 degrees, so the angle DEC is half of that at 55 degrees.

Answer: [tex]55^{\circ}[/tex]

Step-by-step explanation:  

Since, The angle subtended at the center of a circle is double the size of the angle subtended at the edge from the same two points,

Therefore,[tex]\angle AOB=2\angle ADB[/tex]

[tex]\implies\angle ADB=\frac{\angle AOB}{2}[/tex]

But, [tex]\angle AOB=42^{\circ}[/tex]

Therefore, [tex]\angle ADB=21^{\circ}[/tex]

Similarly, [tex]\angle CAD=34^{\circ}[/tex] ( because, it is given that,[tex]\angle COD=68^{\circ}[/tex])

Since, [tex]\angle DEC[/tex] is the exterior angle of [tex]\triangle AED[/tex]

Thus, [tex]\angle DEC=\angle CAD+\angle ADB=34^{\circ}+21^{\circ}=55^{\circ}[/tex]

[tex]\angle DEC=55^{\circ}[/tex]

ACCESS MORE