What is the value of x in the equation?
![What is the value of x in the equation class=](https://us-static.z-dn.net/files/d4e/8aa4c2a345de1e90a6cb02740939379a.png)
Answer:
[tex]x=2[/tex]
Step-by-step explanation:
[tex]2.5(6x-4)=10+4(1.5+0.5x)[/tex]
Rewrite the equation using fractions:
[tex]\frac{5}{2} (6x-4)=10+4(\frac{3}{2} +\frac{1}{2} x)[/tex]
Expand out terms of the left hand side and right hand side using distributive propierty:
[tex]\frac{30}{2} x-\frac{20}{2} =10+\frac{12}{2} +\frac{4}{2}x \\15x-10=10+6+2x[/tex]
Grouping like terms subtracting 2x from both sides and adding 10 to both sides:
[tex]15x-2x-10+10=6+10+10+2x-2x\\15x-2x=6+10+10\\13x=26[/tex]
Finally, divide both sides by 13
[tex]\frac{13}{13} x=\frac{26}{13} \\x=2[/tex]
The value of x in the equation 2.5(6x - 4) = 10 + 4(1.5 + 0.5x) is x = 2
The given equation is:
2.5(6x - 4) = 10 + 4(1.5 + 0.5x)
Expand the equation using the distributive rule
15x - 10 = 10 + 6 + 2x
Collect like terms
15x - 2x = 10 + 10 + 6
Simplify the right and left hand expressions
13x = 26
Divide both sides by 13
[tex]\frac{13x}{13} = \frac{26}{13} \\\\x = 2[/tex]
Learn more here: https://brainly.com/question/11979991