Please Help Me!!!
$1,000 is invested at a rate of 3.25%, compounded annually. Identify the compound interest function that models the situation. Then find the balance after 8 years.
A = 1000(1.03)4t ; $1,249.18
A = 1000(13.26)4t ; $1,259.18
A = 1000(1.0325)t ; $1,291.58
A = 1000(1.0325)t ; $1,270.18

Respuesta :

[tex] \bf ~~~~~~ \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$1000\\
r=rate\to r\%\to \frac{r}{100}\to &0.0325\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{annually, thus once}
\end{array}\to &1\\
t=years\to &t
\end{cases} [/tex]


[tex] \bf A=1000\left(1+\frac{0.0325}{1}\right)^{1\cdot t}\implies \boxed{A=1000(1.0325)^t}
\\\\\\
\stackrel{\textit{8 years, t = 8}}{A=1000(1.0325)^8}\implies A\approx 1291.5775 [/tex]