1. By definition, a given point that divides a segment into a ratio a:b, as the following x-coordinate:
[tex] x1+\frac{a}{a+b} (x2-x1) [/tex]
And the y-coordinate:
[tex] y1+\frac{a}{a+b}(y2-y1) [/tex]
2. Kepping this on mind, you have:
A) x-coordinate:
[tex] -6+(\frac{1}{1+2}) (3+6)=-3 [/tex]
y-coordinate:
[tex] -2+(\frac{1}{1+2} )(1+2)=-1 [/tex]
The answer is: [tex] P(-3,-1) [/tex]
B) The x-coordinate is:
[tex] -1+(\frac{3}{3+1} )(3+1)=2 [/tex]
The y-coordinate is:
[tex] 6+(\frac{3}{3+1} )(-2-6)=0 [/tex]
The answer is: [tex] L(2,0) [/tex]