Which expressions are equivalent to 6^16? Check all that apply. (6^8)^2 is the last answer.
![Which expressions are equivalent to 616 Check all that apply 682 is the last answer class=](https://us-static.z-dn.net/files/dd7/abbd982bfa84b7928bcccd76a26ec7a5.jpg)
The fourth and last are correct.
One you have and exponent of an exponent, the base stays the same and the exponents get to be multiplyied:
[tex] \bf~(y^{x})^{z} = y^{xz} [/tex]
Both -8 x -2 and 8 x 2 equal 16.
Answer:
[tex] \boxed{\bf~The~fourth~and~last~options~are~correct.} [/tex]
Hope it helped,
Happy homework/ study/ exam!
Answer:
[tex](6^{-4})^{-4}=(6^{-2})^{-8}=(6^{8})^{2}=6^{16}[/tex]
Step-by-step explanation:
Given: [tex]6^{16}[/tex]
We need to correct option equivalent to [tex]6^{16}[/tex]
#1 [tex](6^0)^{16}[/tex]
Using exponent property, [tex](a^m)^n=a^{mn}[/tex]
[tex](6^0)^{16}=6^{0\times 16}\Rightarrow 6^0\neq 6^{16}[/tex]
False
#2 [tex](6^8)^{8}[/tex]
Using exponent property, [tex](a^m)^n=a^{mn}[/tex]
[tex](6^8)^{8}=6^{8\times 8}\Rightarrow 6^{64}\neq 6^{16}[/tex]
False
#3 [tex](6^{-4})^{-4}[/tex]
Using exponent property, [tex](a^m)^n=a^{mn}[/tex]
[tex](6^{-4})^{-4}=6^{-4\times -4}\Rightarrow 6^{16}= 6^{16}[/tex]
True
#4 [tex](6^{-2})^{-8}[/tex]
Using exponent property, [tex](a^m)^n=a^{mn}[/tex]
[tex](6^{-2})^{-8}=6^{-2\times -8}\Rightarrow 6^{16}= 6^{16}[/tex]
True
$5 [tex](6^{-1})^{16}[/tex]
Using exponent property, [tex](a^m)^n=a^{mn}[/tex]
[tex](6^{-1})^{16}=6^{-1\times 16}\Rightarrow 6^{-16}\neq6^{16}[/tex]
False
$6 [tex](6^{8})^{2}[/tex]
Using exponent property, [tex](a^m)^n=a^{mn}[/tex]
[tex](6^{8})^{2}=6^{8\times 2}\Rightarrow 6^{16}= 6^{16}[/tex]
True
Hence, [tex](6^{-4})^{-4}=(6^{-2})^{-8}=(6^{8})^{2}=6^{16}[/tex]