Respuesta :
The roots can be written as exponents:
[tex] \sqrt[x]{ {a}^{y} } = {a}^{ \frac{y}{x} } \\ \\ { \sqrt[x]{a} }^{y} = {a}^{ \frac{y}{x} } [/tex]
In this problem, we know that the root is a square root because there is no number on the left side of the root.
So we could write that as:
[tex] {x}^{ \frac{5}{2} } [/tex]
[tex] \sqrt[x]{ {a}^{y} } = {a}^{ \frac{y}{x} } \\ \\ { \sqrt[x]{a} }^{y} = {a}^{ \frac{y}{x} } [/tex]
In this problem, we know that the root is a square root because there is no number on the left side of the root.
So we could write that as:
[tex] {x}^{ \frac{5}{2} } [/tex]
[tex] (\sqrt{x})^{5} [/tex]
Rewrite √ as the power of 1/2
⇒ [tex] (x^{\frac{1}{2}})^{5} [/tex]
⇒[tex] x^{\frac{5}{2}} [/tex]
[tex] \text {Answer: } x^{\frac{5}{2}} [/tex]