Respuesta :

ANSWER

24


EXPLANATION

For a matrix A of order n×n, the cofactor [tex] C_{ij} [/tex] of element [tex] a_{ij} [/tex] is defined to be


   [tex] C_{ij} = (-1)^{i+j} M_{ij} [/tex]


[tex] M_{ij} [/tex] is the minor of element [tex] a_{ij} [/tex] equal to the determinant of the matrix we get by taking matrix A and deleting row i and column j.


Here, we have


   [tex] C_{11} = (-1)^{1+1} M_{11} = M_{11} [/tex]


M₁₁ is the determinant of the matrix that is matrix A with row 1 and column 1 removed. The bold entries are the row and the column we delete.


   [tex] \begin{aligned}
A=\begin{bmatrix}
\bf 1 & \bf -6 & \bf -4\\
\bf 7 & 0 & -3 \\
\bf -9 & 8 & -8
\end{bmatrix} \implies M_{11} &= \text{det}\left(\begin{bmatrix}
0&-3 \\
8&-8
\end{bmatrix} \right)
\end{aligned} [/tex]


Since the determinant of a 2×2 matrix is


   [tex] \det\left(
\begin{bmatrix}
a & b \\
c& d
\end{bmatrix}
\right) = ad-bc [/tex]


it follows that


   [tex] \begin{aligned}
A=\begin{bmatrix}
\bf 1 & \bf -6 & \bf -4\\
\bf 7 & 0 & -3 \\
\bf -9 & 8 & -8
\end{bmatrix} \implies M_{11} &= \text{det}\left(\begin{bmatrix}
0&-3 \\
8&-8
\end{bmatrix} \right) \\
&= (0)(-8) - (-3)(8) \\
&= -(-24) \\
&= 24
\end{aligned} [/tex]


so [tex]C_{11} = M_{11} = 24[/tex]