Respuesta :

To solve this problem you must apply the proccedure shown below:

1. You have the following expression given in the problem above:

[tex] \frac{4}{7} (\frac{21}{8x} +\frac{1}{2})=-2(\frac{1}{7}-\frac{5}{28x}) [/tex]

2. When you apply the distributive property, you obtain:

[tex] \frac{84}{56x}+\frac{4}{14} =-\frac{2}{7}+\frac{10}{28x} [/tex]

3. When you order the terms and you sum the fractions, you have:

[tex] \frac{84}{56x} -\frac{10}{28x} =-\frac{2}{7} -\frac{4}{14} \\ \frac{(84-20)}{56x} =-\frac{4}{7} \\ \frac{64}{56x} =-\frac{4}{7} [/tex]

4. Now, solve for [tex] x [/tex]:

[tex] x=\frac{448}{-224}\\x=-2.0 [/tex]

The answer is: [tex] x=-2.0 [/tex]

Answer:

- 0.5

Step-by-step explanation:

Given equation is,

[tex]\frac{4}{7}(\frac{21}{8}x+\frac{1}{2})=-2(\frac{1}{7}-\frac{5}{28}x)[/tex]

By distributive property,

[tex]\frac{84}{56}x+\frac{4}{14}=-\frac{2}{7}+\frac{10}{28}x[/tex]

Subtraction property of equality,

[tex]\frac{84}{56}x-\frac{10}{28}x=-\frac{2}{7}-\frac{4}{14}[/tex]

Subtracting fractions,

[tex]\frac{84x-20x}{56}=\frac{-4-4}{14}[/tex]

[tex]\frac{64x}{56}=-\frac{8}{14}[/tex]

By cross multiplication,

[tex]896x=-448[/tex]

By division property of equality,

[tex]\implies x=-\frac{448}{896}=-0.5[/tex]