Respuesta :
The equation of line CD in standard form is 5x - 3y = 30
[tex]\texttt{ }[/tex]
Further explanation
Solving linear equation mean calculating the unknown variable from the equation.
[tex]\texttt{ }[/tex]
Gradient of the line could also be calculated from two arbitrary points on line ( x₁ , y₁ ) and ( x₂ , y₂ ) with the formula :
[tex]\large {\boxed{m = \frac{y_2 - y_1}{x_2 - x_1}}}[/tex]
[tex]\texttt{ }[/tex]
If point ( x₁ , y₁ ) is on the line with gradient m , the equation of the line will be :
[tex]\large {\boxed{y - y_1 = m ( x - x_1 )}}[/tex]
Let us tackle the problem.
[tex]\texttt{ }[/tex]
This problem is about Equation of Linear Functions
Let the linear equation : y = mx + c
If we draw the above equation on Cartesian Coordinates , it will be a straight line with :
m → gradient of the line
( 0 , c ) → y - intercept
[tex]\texttt{ }[/tex]
Let:
( 3 , -5 ) → ( x₁ , y₁ )
( 6 , 0 ) → ( x₂ , y₂ )
[tex]\texttt{ }[/tex]
[tex]m = ( y_2 - y_1 ) \div ( x_2 - x_1 )[/tex]
[tex]m = ( 0 - (-5) ) \div ( 6 - 3 )[/tex]
[tex]m = 5 \div 3[/tex]
[tex]m = \frac{5}{3}[/tex]
[tex]\texttt{ }[/tex]
[tex]( y - y_1 ) = m ( x - x_1 )[/tex]
[tex]( y - (-5) ) = \frac{5}{3} ( x - 3 )[/tex]
[tex]y + 5 = \frac{5}{3} ( x - 3 )[/tex]
[tex]3 ( y + 5 ) = 5 ( x - 3 )[/tex]
[tex]3y + 15 = 5x - 15[/tex]
[tex]5x - 3y = 15 + 15[/tex]
[tex]5x - 3y = 30[/tex]
[tex]\texttt{ }[/tex]
Learn more
- Infinite Number of Solutions : https://brainly.com/question/5450548
- System of Equations : https://brainly.com/question/1995493
- System of Linear equations : https://brainly.com/question/3291576
[tex]\texttt{ }[/tex]
Answer details
Grade: High School
Subject: Mathematics
Chapter: Linear Equations
[tex]\texttt{ }[/tex]
Keywords: Linear , Equations , 1 , Variable , Line , Gradient , Point
#LinearWithBrainly
![Ver imagen ustsr](https://us-static.z-dn.net/files/da3/510a75b8ec2583ea47a1dfb41ab870b6.png)
Answer:its b E2020
Step-by-step explanation:
MARK ME BRAINLYST PLZ